Objective PET Lesion Segmentation Using a Spherical Mean Shift Algorithm
نویسندگان
چکیده
PET imagery is a valuable oncology tool for characterizing lesions and assessing lesion response to therapy. These assessments require accurate delineation of the lesion. This is a challenging task for clinicians due to small tumor sizes, blurred boundaries from the large point-spread-function and respiratory motion, inhomogeneous uptake, and nearby high uptake regions. These aspects have led to great variability in lesion assessment amongst clinicians. In this paper, we describe a segmentation algorithm for PET lesions which yields objective segmentations without operator variability. The technique is based on the mean shift algorithm, applied in a spherical coordinate frame to yield a directional assessment of foreground and background and a varying background model. We analyze the algorithm using clinically relevant hybrid digital phantoms and illustrate its effectiveness relative to other techniques.
منابع مشابه
Automatic Graph Cut Segmentation of Lesions in CT Using Mean Shift Superpixels
This paper presents a new, automatic method of accurately extracting lesions from CT data. It first determines, at each voxel, a five-dimensional (5D) feature vector that contains intensity, shape index, and 3D spatial location. Then, nonparametric mean shift clustering forms superpixels from these 5D features, resulting in an oversegmentation of the image. Finally, a graph cut algorithm groups...
متن کاملA New Algorithm for Skin Lesion Border Detection in Dermoscopy Images
Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...
متن کاملEvaluation of methods of co-segmentation on PET/CT images of lung tumor: simulation study
Introduction: Lung cancer is one of the most common causes of cancer-related deaths worldwide. Nowadays PET/CT plays an essential role in radiotherapy planning specially for lung tumors as it provides anatomical and functional information simultaneously that is effective in accurate tumor delineation. The optimal segmentation method has not been introduced yet, however several ...
متن کاملAutomatic Segmentation of the Gross Tumor Volume in Prostate Carcinoma Using Fuzzy Clustering in Gallium-68 PSMA PET/CT Scan
Introduction: Modern radiotherapy (RT) techniques allow a highly precise deposition of the radiation dose in tumor. So, high conformal tumor doses can be reached while sparing critical organs at risk. Materials and Methods: This study was conducted in three phases. In the first phase; Fourteen patients with primary or recurrent prostate cancer receive Gallium-...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 9 Pt 2 شماره
صفحات -
تاریخ انتشار 2006